Создано 24.03.2016
Пожалуй, нельзя начать занятия силовыми тренировками, не зная названия мышц и где они находятся.
Ведь знание строения тела и понимание смысла и структуры тренировок значительно повышает результативность силового тренинга.
Есть три вида мышечной ткани:
гладкие мышцы
Гладкие мышцы образуют стенки внутренних органов, дыхательных проходов и кровеносных сосудов. Медленные и однообразные движения гладких мышц продвигают вещества через органы (например, продукты питания через желудок или мочу через мочевой пузырь). Гладкие мышцы непроизвольные, то есть работают независимо от нашего сознания, непрерывно в течение всей жизни.
сердечная мышца (миокард)
Отвечает за перекачивание крови по всему телу. Также, как и гладкие мышцы, не может контролироваться сознательно. Сердечная мышца быстро сокращается и интенсивно работает всю жизнь.
скелетные (поперечно-полосатые) мышцы
Единственная мышечная ткань, которая управляется сознанием. Скелетных мышц более 600 и они составляют около 40 процентов от массы тела человека. У пожилых людей масса скелетных мышц уменьшается до 25-30%. Однако, при регулярной высокой мышечной активности масса мышц сохраняется до глубокой старости.
Основная функция скелетных мышц: приводить кости в движение и поддерживать позу и положение тела. Мышцы, ответственные за поддержание позы тела, имеют наибольшую выносливость из всех мышц в теле. Кроме того, скелетные мышцы выполняют терморегуляционную функцию, являясь источником тепла.
Мышечная ткань содержит множество длинных волокон (миоцитов), соединенных в пучок (от 10 до 50 миоцитов в одном пучке). Из этих пучков формируется брюшко скелетной мышцы. Каждый пучок миоцитов, также как и сама мышца, покрыт плотной оболочкой из соединительной ткани. На концах оболочка переходит в сухожилия, которые прикрепляются к костям в нескольких точках.
Между пучками мышечных волокон проходят кровеносные сосуды (капилляры) и нервные волокна.
Каждое волокно состоит из более мелких нитей - миофибрилл. Они состоят из еще более мелких частиц, называемых саркомерами. Они произвольно сокращаются под воздействием нервных импульсов, посылаемых от головного и спинного мозга, производя движение суставов. Хотя наши движения находятся под нашим сознательным контролем, мозг может узнать паттерны движений, так что мы можем выполнять определенные задачи, такие как ходьба, не думая.
Силовые тренировки способствуют увеличению количества миофибрилл мышечного волокна и их поперечного сечения. Сначала увеличивается сила мышцы, а затем - её толщина. Но количество самих мышечных волокон не меняется и оно заложено генетически. Отсюда вывод: те, у кого мышцы состоят из большего количества волокон, имеют больше шансов увеличить толщину мышц силовыми тренировками, нежели те, у кого мышцы содержат меньше волокон.
Толщина и количество миофибрилл (поперечное сечение мышцы) определяет силу скелетной мышцы. Показатели силы и мышечной массы возрастают не одинаково: когда мышечная масса увеличивается в два раза, то сила мышц становится в три раза больше.
Есть два типа волокон скелетной мышцы:
Медленные волокна также называют красными, поскольку они содержат большое количество белка красного цвета - миоглобина. Эти волокна выносливые, но работают с нагрузкой в пределах 20-25% от максимальной силы мышц.
Быстрые волокна содержат мало миоглобина и поэтому их еще называют белыми. Они сокращаются в два раза быстрее медленных волокон и способны развить силу в десять раз больше.
Когда нагрузка меньше 25% от максимальной мышечной силы, работают медленные волокна. А когда наступает их истощение, работать начинают быстрые волокна. Когда будет израсходована и их энергия, наступает истощение и мышце требуется отдых. Если нагрузка сразу большая, то оба вида волокон работают одновременно.
Разные типы мышц, выполняющие разные функции, имеют разное соотношение быстрых и медленных волокон. Например, бицепс содержит больше быстрых волокон, чем медленных, а камбаловидная мышца состоит в основном из медленных. Какой тип волокон будет преимущественно задействован в работе в данный момент зависит не от скорости выполнения движения, а от усилия, которое необходимо на него потратить.
Соотношение быстрых и медленных волокон в мышцах каждого человека заложено генетически и неизменно всю жизнь.
Скелетные мышцы получили свои названия исходя из формы, расположения, количества мест прикрепления, места присоединения, направления мышечных волокон, функций.
по форме
по числу головок
по числу брюшек
по направлению мышечных пучков
по функции
по расположению
Скелетные мышцы человека разделяют на большие группы. Каждая большая группа делится на мышцы отдельных областей, которые могут быть расположены слоями. Все скелетные мышцы парные и расположены симметрично. Лишь диафрагма является непарной мышцей.
головы
туловища
конечностей
Скелетные мышцы по отношению к суставам расположены не одинаково. Расположение определяется их строением, топографией и функцией.
Многосуставные мышцы, как правило, длиннее односуставных и расположены более поверхностно. Эти мышцы начинаются на костях предплечья или голени и прикрепляются к костям кисти или стопы, к фалангам пальцев.
Скелетные мышцы имеют многочисленные вспомогательные аппараты:
Фасция - соединительная оболочка, образующая чехол мышцы.
Фасции разделяют отдельные мышцы и группы мышц друг от друга, выполняют механическую функцию, облегчая работу мышц. Как правило, мышцы соединены с фасциями с помощью соединительной ткани. Некоторые мышцы начинаются от фасции и прочно с ними сращены.
Строение фасций зависит от функции мышц и от силы, которую испытывает фасция при сокращении мышцы. Где мышцы хорошо развиты, фасции более плотные. Мышцы, которые несут небольшую нагрузку, окружены рыхлой фасцией.
Синовиальное влагалище отделяет движущееся сухожилие от неподвижных стенок фиброзного влагалища и устраняет их взаимное трение.
Также устраняют трение синовиальные сумки, которые имеются в зонах, где сухожилие или мышца перекидывается через кость, через соседнюю мышцу или в месте контакта двух сухожилий.
Блок является точкой опоры для сухожилия, обеспечивая постоянное направление его движения.
Скелетные мышцы редко работают сами по себе. Чаще всего они работают в группах.
4 типа мышц по характеру их действия:
агонист - непосредственно выполняет какое-либо конкретное движение определенной части тела и несет основную нагрузку при этом движении
антагонист - выполняет противоположное движение по отношению к мышце агонисту
синергист - включается в работу вместе с агонистом и помогает ему ее совершать
стабилизатор - удерживают остальную часть тела при выполнении движения
Синергисты находятся на стороне агонистов и/или неподалеку от них. Агонисты и антагонисты обычно расположены на противоположных сторонах костей рабочего сустава.
Сокращение агониста может привести к рефлекторному расслаблению ее антагониста - взаимное торможение. Но это явление происходит не при всех движениях. Иногда возникает совместное сжатие.
Биомеханические свойства мышц:
Сократимость - способность мышцы сокращаться при возбуждении. Мышца укорачивается и возникает сила тяги.
Сокращение мышц происходит по разному:
-динамическое сокращение - напряжение в мышце, которое изменяет ее длину
Благодаря этому и совершаются движения в суставах. Динамическое сокращение мышц бывает концентрическим (мышца укорачивается) и эксцентрическим (мышца удлиняется).
-изометрическое сокращение (статическое) - напряжение в мышце, при котором ее длина не меняется
При возникающем напряжении в мышце в суставе не происходит никакого движения.
Упругость - способность мышцы восстанавливать первоначальную длину после устранения деформирующей силы. При растяжении в мышце возникает энергия упругой деформации. Чем больше растянута мышца, тем больше энергии в ней запасено.
Жесткость - способность мышцы противодействовать прикладываемым силам.
Прочность - определяется величиной растягивающей силы, при которой происходит разрыв мышцы.
Релаксация - свойство мышцы, которое проявляется в постепенном уменьшении силы тяги при постоянной длине мышцы.
Силовые тренировки способствуют росту мышечной ткани и увеличивают силу скелетных мышц, улучшают работу гладких мышц и сердечной мышцы. За счет того, что сердечная мышца работает более интенсивно и эффективно, улучшается кровоснабжение не только всего организма, но и самих скелетных мышц. Благодаря этому они способны переносить больше нагрузки. Хорошо развитые, благодаря тренировкам, мышцы обеспечивают лучшую поддержку внутренних органов, что благотворно влияет на нормализацию пищеварения. В свою очередь, хорошее пищеварение обеспечивает питание всех органов, и в частности мышц.
Мышцы верхней части тела
Двуглавая мышца плеча (бицепс) - сгибает руку в локте, проворачивает кисть наружу, напрягает руку в локтевом суставе.
Упражнения с сопротивлением: все типы сгибаний рук; движения при гребле.
Подтягивание на перекладине, лазанье по канату, гребля.
Большая грудная мышца: ключичная грудинная (грудь) - приводит руку вперед, внутрь, вверх и вниз.
Упражнения с сопротивлением: жимы лежа под любым углом, разведение рук лежа, отжимания от пола, тяги над головой, отжимания на брусьях, скрещивания рук на блоках.
Грудино-ключично-сосцевидная мышца (шея) - наклоняет голову в стороны, поворачивает голову и шею, наклоняет голову вперед и назад.
Упражнения с сопротивлением: упражнения с головными лямками, борцовский мост, упражнения с сопротивлением партнера и самосопротивлением.
Борьба, бокс, футбол.
Клювоплечевая мышца - поднимает руку к плечу, подтягивает руку к телу.
Упражнения с сопротивлением: разведения, подъемы рук вперед, жим на скамье лежа.
Метания, боулинг, борьба на руках.
Плечевая мышца (плечо) - приводит предплечье к плечу.
Упражнения с сопротивлением: все типы сгибаний рук, сгибание обратным хватом, движения гребкового типа.
Подтягивание, лазанье по канату, борьба на руках, тяжелая атлетика.
Группа мышц предплечья : плечелучевая, длинный лучевой разгибатель кисти, локтевой разгибатель кисти, отводящая мышца и разгибатель большого пальца (предплечье) - приводит предплечье к плечу, сгибает и выпрямляет кисть и пальцы.
Упражнения с сопротивлением: сгибание рук в запястьях, работа на кистевом роллере, «сгибание Зоттмэна», удержание дисков штанги в пальцах.
Все виды спорта, соревнования силовиков с использованием рук.
Прямая мышца живота (брюшной пресс) - наклоняет позвоночник вперед, стягивает переднюю стенку живота, разводит ребра.
Упражнения с сопротивлением: все типы подъемов туловища из положения лежа, то же по сокращенной амплитуде, подъемы на «римском стуле».
Гимнастика, прыжки с шестом, борьба, ныряние, плавание.
Большая передняя зубчатая мышца (зубчатые мышцы) - поворачивает лопатку вниз, разводит лопатки, расширяет грудную клетку, поднимает руки над головой.
Упражнения с сопротивлением: «пуловеры», жимы стоя.
Тяжелая атлетика, метания, бокс, прыжки с шестом.
Косые наружные мышцы живота (косые мышцы) - сгибают позвоночник вперед и в стороны, стягивают переднюю стенку брюшной полости.
Упражнения с сопротивлением: наклоны в стороны, скручивание торса, подъемы туловища со скручиванием.
Толкание ядра, метание копья, борьба, футбол, теннис.
Трапециевидная мышца (трапеции) - поднимает и опускает плечевой пояс, передвигает лопатки, отводит голову назад и наклоняет в стороны.
Упражнения с сопротивлением: поднимания плеч, подъемы штанги на грудь, жим из-за головы, подъемы в стороны рук выше головы, гребковые движения.
Тяжелая атлетика, борьба, гимнастика, стойка на руках.
Группа дельтовидных мышц : передняя головка, боковая головка, задняя головка (дельтоиды) - поднимают руки до горизонтального положения (каждая головка поднимает руку в специфическом направлении: передняя - вперед, боковая - в стороны, задняя - назад).
Упражнения с сопротивлением: все жимы со штангой, гантелями; жимы лежа (передняя дельта); подъемы гантелей вперед, в стороны и назад; подтягивания на перекладине (задняя дельта).
Тяжелая атлетика, гимнастика, толкание ядра, бокс, метания.
Трехглавая мышца (трицепс) - выпрямляет руку и отводит ее назад.
Упражнения с сопротивлением: выпрямления рук, жимы вниз на блоке, жимы лежа узким хватом; все упражнения, включающие выпрямления рук. Выполняет вспомогательную роль в гребковых упражнениях.
Стойка на руках, гимнастика, бокс, гребля.
Широчайшие мышцы спины (широчайшие мышцы) - отводят руку вниз и назад, расслабляют плечевой пояс, способствуют усиленному дыханию, сгибают торс в сторону.
Упражнения с сопротивлением: все виды подтягиваний и тяг на блоках, движения типа гребка, "пуловеры».
Тяжелая атлетика, гребля, гимнастика.
Группа мышц спины : надостная мышца, малая круглая мышца, большая круглая мышца, ромбовидная (спина) - поворачивают руку наружу и внутрь, помогают в отведении руки назад, поворачивают, поднимают и сводят лопатки.
Упражнения с сопротивлением: приседания, становая тяга, движения типа гребка, подъемы туловища из положения лежа ничком.
Тяжелая атлетика, борьба, толкание ядра, гребля, плавание, защита в футболе, танцевальные движения.
Мышцы нижней части тела
Квадрицепсы : широкая наружная мышца бедра, прямая мышца, широкая внутренняя мышца, портняжная мышца (квадрицепс) - выпрямляют ноги, тазобедренный сустав; сгибают ноги, тазобедренный сустав; поворачивают ногу наружу и внутрь.
Упражнения с сопротивлением: все формы приседаний, жимов ногами и выпрямлений ног.
Скалолазание, велоспорт, тяжелая атлетика, легкая атлетика, балет, футбол, коньки, европейский футбол, пауэрлифтинг, спринты, танцы.
Бицепс бедра : полуперепончатая мышца, полусухожильная мышца (бицепс бедра) - различные действия: сгибание ног, поворот бедра внутрь и наружу, разгибание бедра.
Упражнения с сопротивлением: сгибания ног, становая тяга с выпрямленными ногами, Гаккен-приседы с широкой постановкой ступней.
Борьба, спринт, коньки, балет, бег с препятствиями, плавание, прыжки, тяжелая атлетика, пауэрлифтинг.
Большая ягодичная мышца (ягодицы) - выпрямляет и поворачивают бедро наружу.
Упражнения с сопротивлением: приседы, жимы ногами, становые тяги.
Тяжелая атлетика, пауэрлифтинг, лыжи, плавание, спринты, велоспорт, скалолазание, танцы.
Икроножная мышца (голень) - выпрямляет стопу, способствует напряжению ноги в колене, «выключению» коленного сустава.
Упражнения с сопротивлением: подъемы на носки стоя, «ослиные» подъемы, полуприседы или четверть-приседы.
Все формы прыжков и бега, велоспорт, балет.
Камбаловидная мышца
Упражнения с сопротивлением: подъемы на носки сидя.
Группа передней поверхности голени : передняя большеберцовая, длинная малоберцовая - выпрямляет, сгибает и поворачивает ступню.
Упражнения с сопротивлением: подъемы на носки стоя и сидя, поднимание пальцев ног.
Мышца состоит из пучков исчерченных (поперечнополосатых) мышечных волокон. Эти волокна, идущие параллельно друг другу, связываются рыхлой соединительной тканью (endomysium ) в пучки первого порядка. Несколько таких первичных пучков соединяются, в свою очередь образуя пучки второго порядка и т. д. В целом мышечные пучки всех порядков объединяются соединительнотканной оболочкой - perimysium , составляя мышечное брюшко. Соединительнотканные прослойки, имеющиеся между мышечными пучками, по концам мышечного брюшка, переходят в сухожильную часть мышцы.
Так как сокращение мышцы вызывается импульсом, идущим от центральной нервной системы, то каждая мышца связана с ней нервами: афферентным, являющимся проводником «мышечного чувства» (двигательный анализатор, по И. П. Павлову), и эфферентным, приводящим к ней нервное возбуждение. Кроме того, к мышце подходят симпатические нервы, благодаря которым мышца в живом организме всегда находится в состоянии некоторого сокращения, называемого тонусом. В мышцах совершается очень энергичный обмен веществ, в связи с чем они весьма богато снабжены сосудами. Сосуды проникают в мышцу с ее внутренней стороны в одном или нескольких пунктах, называемых воротами мышцы . В мышечные ворота вместе с сосудами входят и нервы, вместе с которыми они разветвляются в толще мышцы соответственно мышечным пучкам (вдоль и поперек).
В мышце различают активно сокращающуюся часть - брюшко и пассивную часть, при помощи которой она прикрепляется к костям, - сухожилие . Сухожилие состоит из плотной соединительной ткани и имеет блестящий светло-золотистый цвет, резко отличающийся от красно-бурого цвета брюшка мышцы. В большинстве случаев сухожилие находится по обоим концам мышцы. Когда же оно очень короткое, то кажется, что мышца начинается от кости или прикрепляется к ней непосредственно брюшком. Сухожилие, в котором обмен веществ меньше, снабжается сосудами беднее брюшка мышцы. Таким образом, скелетная мышца состоит не только из поперечнополосатой мышечной ткани, но также из различных видов соединительной ткани (perimysium, сухожилие), из нервной (нервы мышц), из эндотелия и гладких мышечных волокон (сосуды). Однако преобладающей является поперечнополосатая мышечная ткань, свойство которой (сократимость) и определяет функцию мускула как органа сокращения. Каждая мышца является отдельным органом, т. е. целостным образованием, имеющим свою определенную, присущую только ему форму, строение, функцию, развитие и положение в организме.
Внутренних органов, кожи, сосудов.
Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Кроме того, они выполняют защитную функцию, предохраняя внутренние органы от повреждений.
Скелетные мышцы являются активной частью опорно-двигательного аппарата, включающего также кости и их сочленения, связки, сухожилия. Масса мышц может достигать 50% общей массы тела.
С функциональной точки зрения к двигательному аппарату можно отнести и моторные нейроны, посылающие нервные импульсы к мышечным волокнам. Тела моторных нейронов, иннервирующих аксонами скелетную мускулатуру, располагаются в передних рогах спинного мозга, а иннервирующих мышцы челюстно-лицевой области — в моторных ядрах ствола мозга. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне (рис. 1).
Рис. 1. Разветвления аксона моторного нейрона на аксонные терминалы. Электронограмма
Рис. Строение скелетной мышцы человека
Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, называют двигательной (или моторной) единицей. В глазных мышцах 1 двигательная единица может содержать 3-5 мышечных волокон, в мышцах туловища — сотни волокон, в камбаловидной мышце — 1500-2500 волокон. Мышечные волокна 1 двигательной единицы имеют одинаковые морфофункциональные свойства.
Функциями скелетных мышц являются:
Скелетные мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Наряду с этим скелетные мышцы и скелет выполняют защитную функцию, предохраняя внутренние органы от повреждения.
Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.
Рис. 2. Функции скелетных мышц
Скелетные мышцы обладают следующими физиологическими свойствами.
Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса. Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е 0 около 90 мВ) возбудимость их ниже, чем нервных волокон (Е 0 около 70 мВ). Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.
Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши. Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.
Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия. В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной. Скорость проведения потенциала действия составляет 3-5 м/с.
Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны. Сократимость обеспечивается специализированными сократительными белками мышечного волокна.
Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.
Рис. Скелетные мышцы человека
Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.
Растяжимость - способность мышцы изменять длину под действием растягивающей силы.
Эластичность - способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.
- способность мышцы поднимать груз. Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения. Сила скелетной мышцы зависит от многих факторов. Например, от числа двигательных единиц, возбуждаемых в данный момент времени. Также она зависит от синхронности работы двигательных единиц. Сила мышцы зависит и от исходной длины. Существует определенная средняя длина, при которой мышца развивает максимальное сокращение.
Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.
Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.
Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е. снижается высота подъема. Максимальная работа совершается мышцей при средних нагрузках. Это называется законом средних нагрузок. Величина мышечной работы зависит от числа мышечных волокон. Чем толще мышца, тем больший груз она может поднять. Длительное напряжение мышцы приводит к ее утомлению. Это обусловлено истощением энергетических запасов в мышце (АТФ, гликоген, глюкоза), накоплением молочной кислоты и других метаболитов.
Растяжимость — это способность мышцы изменять свою длину под действием растягивающей ее силы. Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Это свойство очень важно для осуществления нормальных функций скелетных мышц.
Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу, т.е. максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.
Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, так как снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок.
Утомление мышц. Мышцы не могут работать беспрерывно. Длительная работа приводит к снижению их работоспособности. Временное понижение работоспособности мышцы, наступающее при длительной работе и исчезающее после отдыха, называется утомлением мышцы. Принято различать два вида утомления мышц: ложное и истинное. При ложном утомлении утомляется не мышца, а особый механизм передачи импульсов с нерва на мышцу, называемый синапсом. В синапсе истощаются резервы медиаторов. При истинном утомлении в мышце происходят следующие процессы: накопление недоокисленных продуктов распада питательных веществ вследствие недостаточного поступления кислорода, истощение запасов источников энергии, необходимой для мышечного сокращения. Утомление проявляется уменьшением силы сокращения мышцы и степени расслабления мышцы. Если мышца на некоторое время прекращает работу и находится в состоянии покоя, то восстанавливается работа синапса, а с кровью удаляются продукты обмена и доставляются питательные вещества. Таким образом, мышца вновь приобретает способность сокращаться и производить работу.
Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. Различают три основные фазы такого сокращения: латентная фаза, фаза укорочения и фаза расслабления.
Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.е. подчиняется закону «все или ничего». Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении зависит от силы раздражения. При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает; сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение») — этот эффект называется лестницей Боудича. Дальнейшее усиление раздражающего тока на сокращение мышцы не влияет.
Рис. 3. Одиночное сокращение мышцы: А — момент раздражения мышцы; а-6 — скрытый период; 6-в — сокращение (укорочение); в-г — расслабление; г-д — последовательные эластические колебания.
В естественных условиях к скелетной мышце из центральной нервной системы поступают не одиночные импульсы возбуждения, которые служат для нее адекватными раздражителями, а серии импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения, или тетануса. Различают два вида тетануса: зубчатый и гладкий (рис. 4).
Гладкий тетанус возникает, когда каждый последующий импульс возбуждения поступает в фазу укорочения, а зубчатый - в фазу расслабления.
Амплитуда тетанического сокращения превышает амплитуду одиночного сокращения. Академик Н.Е. Введенский обосновал изменчивость амплитуды тетануса неодинаковой величиной возбудимости мышцы и ввел в физиологию понятия оптимума и пессимума частоты раздражения.
Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение поступает в фазу повышенной возбудимости мышцы. При этом развивается тетанус максимальной величины (оптимальный).
Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости мышцы. Величина тетануса при этом будет минимальной (пессимальной).
Рис. 4. Сокращение скелетной мышцы при разной частоте раздражения: I — сокращение мышцы; II — отметка частоты раздражения; а — одиночные сокращения; б- зубчатый тетанус; в — гладкий тетанус
Для скелетных мышц характерны изотонический, изометрический и смешанный режимы сокращения.
При изотоническом сокращении мышцы изменяется ее длина, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не преодолевает сопротивления (например, не перемещает груз). В естественных условиях близкими к изотоническому типу сокращениями являются сокращения мышц языка.
При изометрическом сокращении в мышце во время ее активности нарастает напряжение, но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается. Длина мышечных волокон остается постоянной, меняется лишь степень их напряжения.
Сокращаются по аналогичным механизмам.
В организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими. Они всегда имеют смешанный характер, т.е. происходит одновременное изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим, если преобладает напряжение мышцы, или ауксометрическим, если преобладает укорочение.
Структурно-функциональной единицей скелетной мышцы является симпласт или мышечное волокно - огромная клетка, имеющая форму протяженного цилиндра с заостренными краями (под наименованием симпласт, мышечное волокно, мышечная клетка следует понимать один и тот же объект).
Длина мышечной клетки чаще всего соответствует длине целой мышцы и достигает 14 см, а диаметр равен нескольким сотым долям миллиметра.
Мышечное волокно , как и любая клетка, окружено оболочкой - сарколемой. Снаружи отдельные мышечные волокна окружены рыхлой соединительной тканью, которая содержит кровеносные и лимфатические сосуды, а так же нервные волокна.
Группы мышечных волокон, образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани переходящей на концах мышцы в сухожилия, крепящиеся к кости (рис.1).
Рис. 1.
Усилие, вызываемое сокращением длины мышечного волокна, передается через сухожилия костям скелета и приводит их в движение.
Управление сократительной активностью мышцы осуществляется с помощью большого числа мотонейронов (рис. 2) - нервных клеток, тела которых лежат в спинном мозге, а длинные ответвления - аксоны в составе двигательного нерва подходят к мышце. Войдя в мышцу, аксон разветвляется на множество веточек, каждая из которых подведена к отдельному волокну.
Рис. 2.
Таким образом, один мотонейрон иннервирует целую группу волокон (так называемая нейромоторная единица), которая работает как единое целое.
Мышца состоит из множества нервно моторных единиц и способна работать не всей своей массой, а частями, что позволяет регулировать силу и скорость сокращения.
Для понимания механизма сокращения мышцы необходимо рассмотреть внутреннее строение мышечного волокна, которое, как вы уже поняли, сильно отличается от обычной клетки. Начнем с того, что мышечное волокно многоядерно. Связано это с особенностями формирования волокна при развитии плода. Симпласты (мышечные волокна) образуются на этапе эмбрионального развития организма из клеток предшественников - миобластов.
Миобласты (неоформленные мышечные клетки) интенсивно делятся, сливаются и образуют мышечные трубочки с центральным расположением ядер. Затем в мышечных трубочках начинается синтез миофибрилл (сократительных структур клетки см. ниже), и завершается формирование волокна миграцией ядер на периферию. Ядра мышечного волокна к этому времени уже теряют способность к делению, и за ними остается только функция генерации информации для синтеза белка.
Но не все миобласты идут по пути слияния, часть из них обособляется в виде клеток-сателлитов, располагающихся на поверхности мышечного волокна, а именно в сарколеме, между плазмолемой и базальной мембраной - составными частями сарколемы. Клетки-сателлиты, в отличие от мышечных волокон, не утрачивают способность к делению на протяжении всей жизни, что обеспечивает увеличение мышечной массы волокон и их обновление. Восстановление мышечных волокон при повреждении мышцы возможно благодаря клеткам-сателлитам. При гибели волокна, скрывающиеся в его оболочке, клетки-сателиты активизируются, делятся и преобразуются в миобласты.
Миобласты сливаются друг с другом и образуют новые мышечные волокна, в которых затем начинается сборка миофибрилл. То есть при регенерации полностью повторяются события эмбрионального (внутриутробного) развития мышцы.
Помимо многоядерности отличительной чертой мышечного волокна является наличие в цитоплазме (в мышечном волокне ее принято называть саркоплазмой) тонких волоконец – миофибрилл (рис.1), расположенных вдоль клетки и уложенных параллельно друг другу. Число миофибрилл в волокне достигает двух тысяч.
Миофибриллы являются сократительными элементами клетки и обладают способностью уменьшать свою длину при поступлении нервного импульса, стягивая тем самым мышечное волокно. Под микроскопом видно, что миофибрилла имеет поперечную исчерченность - чередующиеся темные и светлые полосы.
При сокращении миофибриллы светлые участки уменьшают свою длину и при полном сокращении исчезают вовсе. Для объяснения механизма сокращения миофибриллы около пятидесяти лет назад Хью Хаксли была разработана модель скользящих нитей, затем она нашла подтверждение в экспериментах и сейчас является общепринятой.
ЛИТЕРАТУРА